Suche
Gesamtergebnisse (3)
Treffer
1
bis
3
-
How to Predict Recidivism in Young Offenders: Comparing Logistic Regression, Random Forest,...
1, 1), non-recidivism is predicted,
and chances of recidivism are 0.30. If a YO “did not participate” in other treatment
interventions, recidivism is predicted, and chances of recidivism are 0.58.
If a YO “did have
-
Veröffentlichungen - Kriminologischer Dienst - sachsen.de
junger Strafgefangener - Soziale Bindungen als Einflussfaktor auf die Rückfälligkeit. (Masterarbeit, Universität Leipzig).
• Download (*.pdf, 1,27 MB)
Waldeck, L. (2020). How to Predict Recidivism in Young Offenders:
-
Daten & Dialog Nr. 11, September 2020
in
variation effect analysis. BMC genomics, 13(4), 1–10.
doi:10.1186/1471-2164-13-S4-S2
Waldeck, L. (2020). How to predict recidivism in young
offenders: Comparing logistic regression, random forest,
and boosted classification
Amt24 Behördenwegweiser (0)